
Numerical Analysis Final Project Report

Leen Almalki, Rayanah Alsbeey, Reem Alsharabi

Computer Science Department, Effat University

Jeddah, Saudi Arabia

Abstract: Many of the computations we could see utilizing algebraic, or "pen-and-paper,"

approaches are sometimes difficult to accomplish. For example, we may be unable to compute

the integral, derivative, or find the roots of a particular function. [1] This project looks at various

numerical solutions to similar situations. We will look at basic numerical methods for finding

roots and evaluating derivatives. In addition, we will use MATLAB to implement these methods.

1. Algebraic equations

1.1 Bisection method

 To calculate the roots of a polynomial problem, using the bisection method. It divides and

separates the interval in which the root of the equation is located. The intermediate theorem for

continuous functions is the foundation of this technique. It operates by continuously closing the

gap between the positive and negative intervals until the proper solution is found.

 Moreover, figure 1 shows the two cases of Continuous functions with root 𝑥0 or 𝑥𝑟 ∈

[a, b] so as 𝑓(𝑎)𝑓(𝑏) < 0. In (a) it is a positive gradient with 𝑓(𝑎) < 0 and 𝑓(𝑏) > 0. And in (b) it

is a negative gradient with 𝑓(𝑎) > 0 and 𝑓(𝑏) < 0.

Figure 1.1.1 (a) Locally positive gradient (b) Locally negative gradient [4]

By averaging the positive and negative periods, this technique narrows the gap. It's a basic

procedure but it takes time. The method begins with a larger interval and slowly reduces the

interval's size until it bounds the root. Let, 𝑥1= a and 𝑥2= b.

Let us also define another point 𝑥0to be the middle point between a and b, that is,

Now, there exist the following three conditions:

● If 𝑓(𝑥0)=0, we have a root at 𝑥=0.

● If 𝑓(𝑥0) 𝑓(𝑥1) < 0, then there is a root between 𝑥0and 𝑥1.

● If 𝑓(𝑥0) 𝑓(𝑥2) < 0, then there is a root between 𝑥0and 𝑥2.

Ultimately, we keep on testing the checking the sign of the midpoint, so we can teel which part

of the interval the root is. [5]

BISECTION METHOD

Entering the values

clc
clear all

functionIN = input('Enter the function: ', 's'); % entering the
function
thefunction = inline(functionIN);

firstValue = input('Enter the value of a: ') ; % entering the value
of a
endValue = input('Enter the value of b: '); % entering the value of b
error = input('Enter the error: ');% entering the error

Making sure it's continuous

if thefunction(endValue)*thefunction(firstValue)<0

% retaking the values
else
 fprintf('The values are incorrect! Enter new valeus\n'); % error
message
 firstValue = input('Enter the value of a: \n'); % re-entering the
value of a
 endValue = input('Enter the value of b: \n'); % re-entering the
value of b
end

Calculations

for i = 2:1000
 mid = (endValue + firstValue) / 2; % calculating the mid point

% the product of f(b) and f(c) is positive
 if thefunction(endValue) * thefunction(mid)<0
 firstValue = mid;
 else
 endValue = mid;
 end

% the product of f(b) and f(c) is negative

 if thefunction(firstValue) * thefunction(mid) < 0
 endValue = mid;
 else
 firstValue = mid;
 end
% checking the error
 xnew(1) = 0;
 xnew(i) = mid;
 if abs((xnew(i)-xnew(i-1))/xnew(i))<error,break,end
end

Display the answer

fprintf('\n The root is %4.4f ', mid);

 The root is 3.2812

The function entered:

The root:

1.2 Newton method

The Newton-Raphson method, often known as the Newton Method, is a strong method

for numerically solving equations. Let 𝑟 = 𝑥0 + ℎ be a decent approximation of r. Because the

true root is r and ℎ = 𝑟 − 𝑥0, ℎ measures how distant the estimate 𝑥0is from the real value. We

can deduce that because h is 'small’, we can apply the linear (tangent line) approximation.

So, unless 𝑓(𝑥0) is close to 0,

Therefore,

The improved estimate 𝑥1 of 𝑟 is then given by

Then we get the estimate of 𝑥2from 𝑥1

In this way, we obtain a general formula, where 𝑥𝑛is the current estimate and 𝑥𝑛+1 is the

next estimate.

We can geometrically interpret the Newton method. In the figure below, we can see that

the curve 𝑦 = 𝑓(𝑥) meets the x-axis at 𝑟. By letting 𝑎 be the current estimate of 𝑟, the tangent

line to 𝑦 = 𝑓(𝑥) at the point (𝑎, 𝑓(𝑎)) has the equation below:

We then let be the x-intercept of the tangent line resulting in the equation below:

Figure 1.2.1. Geometric interpretation of the Newton’s method

When we compare the above equation with the general equation, we observe that 𝑏 is the

next estimate 𝑟. By drawing the tangent line at 𝑥 = 𝑎 and sliding to the x-axis along this tangent

line, we get the new estimate 𝑏. Therefore, to get the next new estimate we draw the tangent line

at (𝑏, 𝑓(𝑏)) and ride the new tangent line to the x-axis. We then repeat this process till we get the

desired tolerated error. [1]

Newton Method MATLAB implementation

clc

clear all

Initial Condition

x = zeros(size(30)); % assuming the max array size is 30

x(1) = pi/4; % % x_(n-1)

error = 10^(-3);

Root of f(x) = cosx - x

n = 2;

while (true)

 f = cos(x(n-1))-x(n-1); % f(x_(n-1))

 df = -sin(x(n-1)) - 1 ;% f'(x_(n-1))

 x(n) = x(n-1) - f / df; % the newton method

 err = abs(x(n)-x(n-1)); % calculating error

 if (err <= error) % check the error

 x = x(n);

 break;

 end

 n = n + 1; % else

end

Print the result

disp(x);

 0.7391

1.3 Secant method

Secant method is used to find the root for a polynomial equation. It uses two initial values

for 𝑥𝑛−1 and 𝑥𝑛−2, where 𝑥𝑛−1 ≠ 𝑥𝑛−2. A straight line is fitted between the 𝑓(𝑥) evaluations at

these points. This line is known as the secant line, and the intercept of the secant line with the x-

axis gives an estimate of the root, 𝑥𝑛. Moreover, an advantage of this method is that 𝑓(𝑥)
′ is not

needed.

Furthermore, figure 1 shows two cases of the secant method. In case (a), 𝑥𝑛−1 and 𝑥𝑛−2

are both on the same side of 𝑥𝑛. On the other hand, case (b) shows that they are on opposite sides

of 𝑥𝑛.

Figure 1.3.1. The two situations that can occur regarding the location of 𝑥𝑛−1 and 𝑥𝑛−2 relative to 𝑥𝑛 [1]

Nevertheless, the implementation of the secant method int equation 1.3.3, may be derived

as follows:

𝑥𝑛−1 𝑎𝑛𝑑 𝑥𝑛−2 𝑎𝑟𝑒 𝑔𝑖𝑣𝑒𝑛

𝑥𝑛 = 𝑥𝑛−1 −
𝑓(𝑥𝑛−1)

𝑓′(𝑥𝑛−1)
 equation 1.3.1

𝑓′(𝑥𝑛−1) = 𝑙𝑖𝑚
𝑥→0

𝑓(𝑥𝑛−1) − 𝑓(𝑥𝑛−2)

𝑥𝑛−1 − 𝑥𝑛−2

𝑓′(𝑥𝑛−1) ≈
𝑓(𝑥𝑛−1) − 𝑓(𝑥𝑛−2)

𝑥𝑛−1 − 𝑥𝑛−2
 equation 1.3.2

Substituting eq. 1.3.2 into eq. 1.3.1

𝑥𝑛 = 𝑥𝑛−1 −
𝑓(𝑥𝑛−1)[𝑥𝑛−1−𝑥𝑛−2]

𝑓(𝑥𝑛−1) − 𝑓(𝑥𝑛−2)
 equation 1.3.3

Finally, it should be noted that the secant method necessitates 𝑓(𝑥𝑛−1) ≠ 𝑓(𝑥𝑛−2). Even

though we assumed that 𝑥𝑛−1 ≠ 𝑥𝑛−2, this limitation may be problematic for roots approaching a

turning point in 𝑓(𝑥). [1]

Secant Method MATLAB Implementation

clc

clear all

Initial Values

x = zeros(size(30)); % assuming the max array size is 30

x(1) = pi/4; % x_(n-2)

x(2) = 1; % x_(n-1)

error = 10^(-3);

Root of f(x) = cosx - x

n = 3;

while (true)

 f1 = cos(x(n-1))-x(n-1); % f(x_(n-1))

 f2 = cos (x(n-2))-x(n-2); % f(x_(n-2))

 x(n) = x(n-1) - (f1 * (x(n-1)-x(n-2))) / (f1-f2); % Secant method

 if (abs(x(n)-x(n-1)) <= error) % check the erro

 x = x(n); % set the result to x_n

 break;

 end

 n = n+1; % continue if we didn't reach the error

end

Print the result

disp(x);

 0.7391

2. Differential equations

2.1 Euler Method

 Euler’s method can be used for determining an approximation of the solution to initial

value problems for ordinary differential equations. If the differential equation we want to solve is

of the type
𝑑𝑦

𝑑𝑥
= 𝑦′ = 𝑓(𝑥, 𝑦) with initial value of 𝑦 = 𝑦0, and the solution of the type 𝑦 = 𝑔(𝑥, 𝑦)

as shown in figure 2.1.1

The integral of y’ from x0 to x1 gives 𝑦1 = 𝑦0 + ∫ 𝑓(𝑥, 𝑦) 𝑑𝑥
𝑥1

𝑥0
. The second term may be thought

of as the area under the curve 𝑓(𝑥, 𝑦) between 𝑥0 and 𝑥1.

Figure 2.1.1 the differential equation and its solution [2]

 Euler calculated an approximation based on the area of the rectangle specified by 𝑦0
′ , 𝑦1

′ ,

𝑥0, and 𝑥1. The estimated value of 𝑦1 is then given by 𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑓(𝑥0, 𝑦0) where ℎ represents

the step size between 𝑥 values.

However, the following shows the derivation of Euler’s method in equation 2.1.1.

𝑦′ = 𝑓(𝑥, 𝑦)

𝑦′ =
𝑦(𝑥 + ℎ) − 𝑦(𝑥)

ℎ

So,

𝑓(𝑥𝑛, 𝑦𝑛) =
𝑦𝑛+1 − 𝑦𝑛

ℎ

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛, 𝑦𝑛) equation 2.1.1

After finding the solution for 𝑦𝑛+1, we can find the solution for 𝑦𝑛+2. In general, Euler’s

method is sequential, which means that the value of 𝑦𝑛 depends on the value of 𝑦𝑛−1, and so on.

Finally, we are not producing 𝑔(𝑥, 𝑦), but rather numerical points that are estimates.

Also, by utilizing lower values of ℎ, we can enhance the estimates. However, as we go away

from 𝑦0, our estimates will deviate from 𝑔(𝑥, 𝑦). [2] Figure 2.1.2 shows the curve of the

solution.[3]

Figure 2.1.2 the curve of Euler’s method solution. [3]

Euler Method MATLAB Implementation

clc
clear all

interval

a = 0; % start
b = 5; % end
n = 10; % number of iterations
h = (b - a) / n; % step size

discretization

x = a:h:b;
y = zeros (size(x));

initial condition

y(1) = 1;

differential equation y' = 2x + y

for i = 1: n - 1 % loop
 f = 2*x(i) + y(i); % f(x_n, y_n)
 y(i+1) = y(i) + h*f; % y_(n+1) = y_n + hf(x_n, y_n)
end

plot

figure (1)
plot(x, y)
xlabel ('x')
ylabel('f(x)')

2.2 Taylor Method

 In mathematics, a Taylor series is a representation of a function 𝑓—for which all orders

of derivatives exist—at a point in the domain of 𝑓 in the form of a power series. In other words,

the Taylor series of a function 𝑓(𝑥) around a point 𝑥 = 𝑎 has the formula

ƒ(𝑛)(𝑎) is the nth derivative of the function 𝑓(𝑥) at 𝑥 = 𝑎. To calculate a Taylor series, we find

the derivatives from 0 to n and substitute them into the formula.

In this series, Brook Taylor, an English mathematician, is featured. If 𝑎 = 0, the series

is called a Maclaurin series. Colin Maclaurin, a Scottish mathematician, was the inspiration for

the name.

TAYLOR METHOD

clc
clear all
f = @(x,y) (y==2*x+1); %y'=2x+1
fprime=@(x,y) (2); %y''=2

Values

 a = 0; %start
 b = 3; %end
 n = 6; %number of iterations
 y0 = 1; %y0=1

 h = (b-a)/n; %step size = 0.5
 x=[a zeros(1,n)];
 y=[y0 zeros(1,n)];

 for i = 1:n+1
 x(i+1)=x(i)+h;
 yprime=f(x(i),y(i))+(h/2)*fprime(x(i),y(i));
 y(i+1)=y(i)+h*yprime;
 fprintf('%5.4f %11.8f\n', x(i), y(i));
 end

PLOT

 figure (1)
 plot(x,y)
 xlabel ('x')
 ylabel('y')

Output and Plot:

2.3 Runge-Kutta Method

The Runge–Kutta technique is a popular and successful approach for solving differential

equations' initial-value problems. This method can be used to build high-order accurate

numerical methods from functions without the necessity for high-order derivatives.

We will consider the first-order initial-value problem as:

To get the Runge-Kutta method, we first divide the interval [𝑎, 𝑏] into 𝑁 subintervals as

[𝑥𝑛 , 𝑥𝑛+1]Then integrate 𝑦’ = 𝑓(𝑥, 𝑦) over [𝑥𝑛 , 𝑥𝑛+1] and use the mean value theorem for

integrals to get:

Were,

By the linear combination of values, we approximate we will obtain the

general form of the method as shown below:

We can get alternative form Runge-Kutta computing formulas by changing the values of

the parameters. The Runge-Kutta formula that is most extensively used is shown below, it is

commonly known as the four-order Runge–Kutta method, which requires four different function

values in each step iteration.[5]

Runge-Kutta Method MATLAB implementation

clc;

clear all;

Input:

n = 100;

a= 0;

b = 50;

h= (b-a)/n

Initial condition:

x(1) = 0;

y(1) = 5;

Differential Eq. 2*sin(x)+cos(y)

f = @(x,y) 2*sin(x) + cos(y);

% loop

for i=1:n

 x(i+1) = x(i)+h;

 k1 = f(x(i),y(i));

 k2 = f(x(i)+1/2*h,y(i)+1/2*h*k1);

 k3 = f(x(i)+1/2*h,y(i)+1/2*h*k2);

 k4 = f(x(i)+h,y(i)+h*k3);

 y(i+1)=y(i)+1/6*(k1+2*k2+2*k3+k4);

end

Visualization:

figure(1)

plot(x,y);

xlabel=('x');

ylabel('y');

References

[1] S. J. Garrett, “Introductory numerical methods,” in Introduction to Actuarial and

Financial Mathematical Methods, Elsevier, 2015, pp. 411–463.

[2] B. Liengme and K. Hekman, “Differential Equations,” in Liengme’s Guide to Excel®

2016 for Scientists and Engineers, Elsevier, 2020, pp. 337–353.

[3] “Euler’s method explained with examples,” freeCodeCamp.org, 26-Jan-2020.

[Online]. Available: https://www.freecodecamp.org/news/eulers-method-explained-

with-examples/. [Accessed: 27-Apr-2022].

[4] Sci-Hub | Introductory Numerical Methods. Introduction to Actuarial and Financial

Mathematical Methods, 411–463 | 10.1016/B978-0-12-800156-1.00013-3. (2015).

Sci-Hub.st. https://sci-hub.st/10.1016/B978-0-12-800156-1.00013-3

[5] Zheng, L., & Zhang, X. (2017, September 11). Runge-Kutta method. Runge-Kutta

Method - an overview | ScienceDirect Topics. Retrieved April 28, 2022, from

https://www.sciencedirect.com/topics/mathematics/runge-kutta-method

[6] “Where do Taylor series come from and why do we learn about them?,”

Cambridgecoaching.com, 2022.

https://blog.cambridgecoaching.com/where-do-taylor-series-come-from-and-why-do-we-

learn-about-them (accessed Apr. 28, 2022).

https://www.freecodecamp.org/news/eulers-method-explained-with-examples/
https://www.freecodecamp.org/news/eulers-method-explained-with-examples/
https://sci-hub.st/10.1016/B978-0-12-800156-1.00013-3
https://www.sciencedirect.com/topics/mathematics/runge-kutta-method
https://blog.cambridgecoaching.com/where-do-taylor-series-come-from-and-why-do-we-learn-about-them
https://blog.cambridgecoaching.com/where-do-taylor-series-come-from-and-why-do-we-learn-about-them

